If it's not what You are looking for type in the equation solver your own equation and let us solve it.
47x^2+1.617x-74.45=0
a = 47; b = 1.617; c = -74.45;
Δ = b2-4ac
Δ = 1.6172-4·47·(-74.45)
Δ = 13999.214689
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.617)-\sqrt{13999.214689}}{2*47}=\frac{-1.617-\sqrt{13999.214689}}{94} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.617)+\sqrt{13999.214689}}{2*47}=\frac{-1.617+\sqrt{13999.214689}}{94} $
| 36*3/4=x | | 3/5b-3=1.2 | | 36*4/3=x | | 2+6p-2p=5p+7 | | 35e+2=65 | | 2e+5=3-2 | | 1.6x+0.3x=8.3+2.3x | | °f=9/5°(20)+32 | | 105=1/2h(10+5) | | 24*2/3=x | | 2/3x-5=1/3x-4+1/3x-1 | | 24*3/2=x | | 3.7+3.75k=27.35 | | 36x^2+6.615x-81=0 | | 22*2/1=x | | -9x+-27=45 | | 22*1/2=x | | 1-10x=14-3x | | 6h*2=10 | | -32+27h=832 | | 9*3/1=x | | (29+0.8)d=46.12 | | 5148=1/2a*18^2 | | 1e*5=2 | | 5184=1/2a18^2 | | 6=u/3-10 | | 24g-3=15 | | 9x-7x-5=11 | | 5x-8=10x+3 | | 35=3(x+3) | | 4x+18=7(x-3 | | -6.25/x=-8.75 |